Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(4): 046401, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335370

RESUMO

CeRh_{2}As_{2} is a new multiphase superconductor with strong suggestions for an additional itinerant multipolar ordered phase. The modeling of the low-temperature properties of this heavy-fermion compound requires a quartet Ce^{3+} crystal-field ground state. Here, we provide the evidence for the formation of such a quartet state using x-ray spectroscopy. Core-level photoelectron and x-ray absorption spectroscopy confirm the presence of Kondo hybridization in CeRh_{2}As_{2}. The temperature dependence of the linear dichroism unambiguously reveals the impact of Kondo physics for coupling the Kramer's doublets into an effective quasiquartet. Nonresonant inelastic x-ray scattering data find that the |Γ_{7}^{-}⟩ state with its lobes along the 110 direction of the tetragonal structure (xy orientation) contributes most to the multiorbital ground state of CeRh_{2}As_{2}.

2.
Rep Prog Phys ; 79(12): 124501, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27749278

RESUMO

This article attempts to review how band structure calculations can help to better understand the intriguing behavior of materials with strongly correlated electrons. Prominent examples are heavy-fermion systems whose highly anomalous low-temperature properties result from quantum correlations not captured by standard methods of electronic structure calculations. It is shown how the band approach can be modified to incorporate the typical many-body effects which characterize the low-energy excitations. Examples underlining the predictive power of this ansatz are discussed.

3.
J Phys Condens Matter ; 23(9): 094215, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21339568

RESUMO

We present calculations of the magnetic-field-induced changes of the heavy quasiparticles in YbRh2Si2 which are reflected in thermodynamic and transport properties. The quasiparticles are determined by means of the renormalized band method. The progressive de-renormalization of the quasiparticles in the magnetic field is accounted for using field-dependent quasiparticle parameters deduced from numerical renormalization group studies. Consequences for the interpretation of experimental data are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...